Alternative exon 9-encoded relay domains affect more than one communication pathway in the Drosophila myosin head.

نویسندگان

  • Marieke J Bloemink
  • Corey M Dambacher
  • Aileen F Knowles
  • Girish C Melkani
  • Michael A Geeves
  • Sanford I Bernstein
چکیده

We investigated the biochemical and biophysical properties of one of the four alternative regions within the Drosophila myosin catalytic domain: the relay domain encoded by exon 9. This domain of the myosin head transmits conformational changes in the nucleotide-binding pocket to the converter domain, which is crucial to coupling catalytic activity with mechanical movement of the lever arm. To study the function of this region, we used chimeric myosins (IFI-9b and EMB-9a), which were generated by exchange of the exon 9-encoded domains between the native embryonic body wall (EMB) and indirect flight muscle isoforms (IFI). Kinetic measurements show that exchange of the exon 9-encoded region alters the kinetic properties of the myosin S1 head. This is reflected in reduced values for ATP-induced actomyosin dissociation rate constant (K(1)k(+2)) and ADP affinity (K(AD)), measured for the chimeric constructs IFI-9b and EMB-9a, compared to wild-type IFI and EMB values. Homology models indicate that, in addition to affecting the communication pathway between the nucleotide-binding pocket and the converter domain, exchange of the relay domains between IFI and EMB affects the communication pathway between the nucleotide-binding pocket and the actin-binding site in the lower 50-kDa domain (loop 2). These results suggest an important role of the relay domain in the regulation of actomyosin cross-bridge kinetics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive and negative intronic regulatory elements control muscle-specific alternative exon splicing of Drosophila myosin heavy chain transcripts.

Alternative splicing of Drosophila muscle myosin heavy chain (MHC) transcripts is precisely regulated to ensure the expression of specific MHC isoforms required for the distinctive contractile activities of physiologically specialized muscles. We have used transgenic expression analysis in combination with mutagenesis to identify cis-regulatory sequences that are required for muscle-specific sp...

متن کامل

Myosin functional domains encoded by alternative exons are expressed in specific thoracic muscles of Drosophila

The Drosophila 36B muscle myosin heavy chain (MHC) gene has five sets of alternatively spliced exons that encode functionally important domains of the MHC protein and provide a combinatorial potential for expression of as many as 480 MHC isoforms. In this study, in situ hybridization analysis has been used to examine the complexity and muscle specificity of MHC isoform expression in the fibrill...

متن کامل

Spatially and temporally regulated expression of myosin heavy chain alternative exons during Drosophila embryogenesis

We used alternative exon-specific probes to determine the accumulation of transcripts encoding myosin heavy chain (MHC) isoforms in Drosophila melanogaster embryos. Six isoforms accumulate in body wall muscles. Transverse (external) muscles express a different major form than intermediate and internal muscles, suggesting different physiological properties. Cardioblasts express one of the somati...

متن کامل

Transposable element insertions respecify alternative exon splicing in three Drosophila myosin heavy chain mutants.

Insertions of transposable elements into the myosin heavy chain (Mhc) locus disrupt the regulation of alternative pre-mRNA splicing for multi-alternative exons in the Mhc2, Mhc3, and Mhc4 mutants in Drosophila. Sequence and expression analyses show that each inserted element introduces a strong polyadenylation signal that defines novel terminal exons, which are then differentially recognized by...

متن کامل

The role of evolutionarily conserved sequences in alternative splicing at the 3' end of Drosophila melanogaster myosin heavy chain RNA.

Exon 18 of the muscle myosin heavy chain gene (Mhc) of Drosophila melanogaster is excluded from larval transcripts but included in most adult transcripts. To identify cis-acting elements regulating this alternative RNA splicing, we sequenced the 3' end of Mhc from the distantly related species D. virilis. Three noncoding regions are conserved: (1) the nonconsensus splice junctions at either end...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 389 4  شماره 

صفحات  -

تاریخ انتشار 2009